Αν $P$ εσωτερικό σημείο τριγώνου και $d_{1},d_{2},d_{3}$ οι αποστάσεις του $P$ από τις κορυφές $A,B,C$ δείξτε ότι:
α) $(\beta+\gamma)(\alpha+\beta+d_{1}+d_{2})>2\gamma^{2}+\beta^{2}$
β) $(\alpha+\gamma)(\beta +\gamma +d_{2}+d_{3})>3\alpha\gamma$
Μπορεί άραγε κάτι που έχει να κάνει με τα Μαθηματικά να έχει ταυτόχρονα γλύκα; Μπορούμε να κάνουμε Μαθηματικά και να χαιρόμαστε συγχρόνως; Μπορεί το παίδεμα για να λύσουμε ένα δύσκολο πρόβλημα να είναι συναρπαστικό; Η προσπάθεια που γίνεται εδώ, φιλοδοξεί να αποδείξει ότι οι απαντήσεις στα παραπάνω ερωτήματα μπορούν να είναι ΝΑΙ! Μπορείτε να στέλνετε τις λύσεις σας, τις ερωτήσεις, τις παρατηρήσεις σας και δικά σας προβλήματα στη διεύθυνση mathsweets@gmail.com
Αν $P$ εσωτερικό σημείο τριγώνου και $d_{1},d_{2},d_{3}$ οι αποστάσεις του $P$ από τις κορυφές $A,B,C$ δείξτε ότι:
α) $(\beta+\gamma)(\alpha+\beta+d_{1}+d_{2})>2\gamma^{2}+\beta^{2}$
β) $(\alpha+\gamma)(\beta +\gamma +d_{2}+d_{3})>3\alpha\gamma$
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου