Οι πραγματικοί αριθμοί $\alpha, \beta, \gamma, \delta, \epsilon$ είναι τέτοιοι ώστε $\alpha< \beta< \gamma< \delta< \epsilon$. Βρίσκουμε όλα τα αθροίσματα που δημιουργούνται με δύο όρους από τους $\alpha, \beta, \gamma, \delta, \epsilon$ και παρατηρούμε ότι τα τρία μικρότερα από αυτά είναι 128, 144 και 148, ενώ τα δύο μεγαλύτερα είναι 204 και 192. Να προσδιορίσετε τους πραγματικούς αριθμούς $\alpha, \beta, \gamma, \delta, \epsilon.$
Μπορεί άραγε κάτι που έχει να κάνει με τα Μαθηματικά να έχει ταυτόχρονα γλύκα; Μπορούμε να κάνουμε Μαθηματικά και να χαιρόμαστε συγχρόνως; Μπορεί το παίδεμα για να λύσουμε ένα δύσκολο πρόβλημα να είναι συναρπαστικό; Η προσπάθεια που γίνεται εδώ, φιλοδοξεί να αποδείξει ότι οι απαντήσεις στα παραπάνω ερωτήματα μπορούν να είναι ΝΑΙ! Μπορείτε να στέλνετε τις λύσεις σας, τις ερωτήσεις, τις παρατηρήσεις σας και δικά σας προβλήματα στη διεύθυνση mathsweets@gmail.com
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου